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A B S T R A C T  

The relation between the two notions, quasifactors and joinings, is inves- 
tigated and the notion of a joining quasifactor is introduced. We clarify 
the close connection between quasifactors and symmetric infinite selfjoin- 
ings which arises from de Finetti-Hewitt-Savage theorem. Unlike the 
zero-entropy case where quasifactors seems to preserve some properties 
of their parent system, it is shown that any ergodic system of positive 
entropy admits all ergodic systems of positive entropy as quasifactors. A 
restricted version of this result is obtained for joining quasifactors. 

0. I n t r o d u c t i o n  

For a measure preserving t ransformat ion  (X, 2(, #, T),  a factor system (]/", y ,  u, S) 

with a factor map 7r: X --~ Y can be viewed as the T- invar ian t  subalgebra 

r - l ( Y )  C 2(. One can also describe the factor (Y, y ,  u, S) as a measure preserv- 

ing t rans format ion  on the space M ( X )  of probabi l i ty  measures on X as follows. 

Disintegrate the measure # along the fibers of 7r- l (Y) ,  

(,) 
JY 
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and observe that the T-invariance of # implies that Tpy = #Zy. Denoting 

by ¢: Y --+ M(X) the map ¢(y) = #y and letting u* = ¢.(u), we see that 

¢: (Y, y, u, T) --4 (M(X), u*, T) is an isomorphism. The connection with # is 

given by (,) which says that # is the b a r y c e n t e r  of u*. A general quas i fac to r  

of (X, B, #, T) is any T-invariant measure on M(X) whose barycenter is #. This 

notion was introduced in [G] and further studied in [GW], where it was shown 

that, like factors, quasifactors inherit some dynamical properties. For example, 

zero entropy and distality (which implies zero entropy) are preserved under a 

passage to a quasifactor. 

A joining A of two systems (X, X, #, T) and (Y, y ,  u, S), i.e., a T x S-invariant 

probability on X x Y which projects onto it and v respectively, similarly gives 

rise to a quasifactor of (X, X, it, T) by disintegrating A over v: 

A = / y  ity x ~ydu(y) 

(and, of course, symmetrically, a quasifaetor of (Y, Y, u, S)). In fact every quasi- 

factor of (X, X, it, T) can be obtained this way from a joining, but in general the 

joining A carries more information than there is in the corresponding quasifactor. 

Moreover, even when the quasifactor we start from is ergodic, this need not be 

the case with the associated joining. 

In this work we investigate the relation between the two notions, quasifactors 
and joinings, and show that,  unlike the zero entropy case where quasifactors 

seems to preserve some properties of their parent system, any ergodic system of 

positive entropy admits all ergodic systems of positive entropy as quasifactors. 

More specifically, the paper is arranged as follows. In the first section we clar- 

ify the close connection between quasifactors and symmetric infinite selfjoinings 

which arises from the de Finetti-Hewitt-Savage theorem (Theorem 1.2). As a 
corollary we retrieve our zero entropy results on quasifactors (Corollary 1.3). 

(The recent comprehensive work of Lemaficzyk, Parreau and Thouvenot on a 

family of Gaussian automorphisms (the "GAG's) [LPT] contains related results 

on joinings and disjointness; see Mso [GTW].) In section 2 the notion of a "joining 

quasifactor" is introduced. In section 3 we prove the above assertion about posi- 

tive entropy systems (Theorem 3.6). We make use of a result of Smorodinsky and 

Thouvenot [ST], showing that  any positive entropy ergodic system is spanned by 

three Bernoulli factors. In the last section we prove the same theorem for joining 
quasifactors (Theorem 4.1). For this we develop a variant of [ST] involving sym- 

metric joinings of Bernoulli shifts the proof of which is based on the beautiful 

theorem of J. Kieffer [K] on zero error coding. However, we can only prove this 
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stronger result up to finite to one extensions and for systems satisfying the weak 

Pinsker property and having finite entropy. 

1. Quasifactors and infinite order symmetric selfjoinings 

Let X =(X,  X, # , T ) b e  an ergodic measure preserving dynamical system on a 

standard Borel space (X, X). Let M = M(X) be the space of probability mea- 

sures on X with the Borel structure determined by the maps # ~-~ #(A) for a 

fixed A E A'. Recall that  ~, a probability measure on the space M = M ( X ) ,  

is a quasifactor of the system X if it is T-invariant, and satisfies the barycenter 
equation: 

M 0 d~;(O) = p. 
(x) 

This equation means that  - -  choosing any compact topology on X compatible 

with its Borel structure for every continuous function f E C(X), 

fM /xf(x)  dO(x) d~(O)= /xf(x)  dl~(x). 

It  turns out that  this definition does not depend on the particular choice of 

compact metric topology on X,  [G]. The quasifactor g is e r g o d i e  if the system 

(M, ~) is ergodic. We let Q(X, p) denote the set of quasifactors of X and Qe(X, p) 
the subset of ergodic quasifactors. It  is sometimes convenient to dissociate the 

quasifactor from the original system by writing W for M(X), with the bijection 

w ~ 0w. In this notation the barycenter equation becomes 

wOw d,~(w) = t, 

and we write (W, g, T) for the system (M(X), g, T). 
Given t~ c Q(X, #) set 

~' -- [ (0 × 5o)dn(O), 
JM (X) 

a probability measure on X ~ := X x M(X) which is a joining of p and ~. For a 

positive integer k > I we let 

~(k)=[ (0x0x...x0) (~od~( O ), x 
JM (X) 

where 0 x 0 x - . .  x 0 is a k-fold product, and 

~(~)=[ (...0x0x0.. ~od~(O). x 
J M  (x) 
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We let 

= [ e × e × . . . ×  and = [ (-.-O × O × 
JM (x) JM(X) 

be the corresponding projections onto X k and X °°, respectively. The measures 

~(k) and ~(o~) are selfjoinings of the system (X, #). In particular, ~(1) = R, = # 

and R(2) = fM(x) 0 x Odt~(O). 
We will next consider the close connection between quasifactors and symmetric 

infinite selfjoinings which arises from the de Finet t i -Hewit t -Savage theorem. 

Let X be a compact metric space. As usual X z is the infinite product space 

and we let @ be the group of permutations of coordinates in X z which fix all 

but finitely many of them. Let M ( X )  be the compact metric Bauer simplex 

of all probability Borel measures on X and let Q = M ( M ( X ) )  be the space 

of probability Borel measures on M ( X ) .  Let `7 C M ( X  z) be the convex closed 

subset of M ( X  z) consisting of all probability measures on X z which are invariant 

under ~;  these measures are called s y m m e t r i c .  We set 

¢: Q --+ ̀ 7, 
(**) ]M ~-~ ¢(t~) = k = R(c~) = ( . . .O x 0 x 0. . . )dR(0).  

(x) 

Clearly ¢ is a continuous affine map of Q into ft.  The de Finet t i -Hewit t -Savage 

theorem, [HS], in the version proved by L. Dubins (see [D]), states that  this map 

is an affine homeomorphism of Q onto ft. In particular, as in the Bauer simplex 

Q the set of extreme points is the closed set 

{50 : 0 e M(X)} ;  

it follows that  in ,7, the set of extreme points is the closed set 

{¢(~0) : 0 e M ( X ) }  = {8 . . . .  O × O x O . . . :  O e M(X)} ,  

and that  (**) is the unique Choquet representation of an element A of the simplex 

f f  as an integral over the set of extreme points, or, in other words, its ® ergodic 

decomposition. 

THEOREM 1.1 (de Finetti Hewitt-Savage): The map ¢: Q -~ ,7 is an afline 

homeomorphism. 

Let now X = (X, X, p, T) be an ergodic system with X a compact metric space 

and {T n : n E Z} acting on X as a group of homeomorphisms. Let T act on 
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X z by the diagonal action. We denote by J~ym(X) the set of all G-symmetric T- 

invariant probability measures on X z with marginal # on the 0 (hence also every 

n E Z) coordinate. Clearly, for every ~ E Q(X, p) the corresponding infinite 

joining ~(~) is in J~m(X).  

THEOREM 1.2: 

(1) Every quasifactor ~ of the system (X, #) is canonically isomorphic to a 
factor of the infinite order, symmetric, selOoining (X z, ~(o~)) E Js~m(X) of 

(X, p). The factor map c~: (X z, ~(~)) --+ (W, ~) = (M(X),  ~) is the factor 

map which corresponds to the a-algebra of ®-invariant sets; i.e., to the 
®-ergodic decomposition. Thus, denoting ~ . . . .  O~ x 0~, x 0~. . . ,  the 
®-ergodic decomposition 

~(~) = j ;  ~dn(w) 

coincides with the disintegration of ?~ (oo) over ~ with respect to c~, and for 
g a.e.  W, ¢w(O~-I(w))  = 1. 

(2) The map ¢: n ~ k(~), ¢: Q(X, #) --+ J~m(X) is an a n n e  homeomorphism 
onto. 

Proo~ (1) Fix a compact metric topology on X and observe that Q(X, #) is 

a closed convex subset of Q and t h a t  Js~m(X) is a closed convex subset of ,7. 

Moreover, clearly ¢: Q --+ ,7 maps Q(X,p) into J~m(X).  IrA E J~m(X),  then A 

as an element of ,7 has a unique representation (**). Applying T to (**) we get 

f 
TA = ] (...TO x TO x TO...)d~(O) 

J M  (x) 

/ (...o × o × O...)dT,~(O). 
J M  (x) 

On the other hand 

TA = A = f ( . . .0 x 0 x O.-.)dn(O), 
JM (X) 

and the uniqueness of the representation implies that T t¢=  to. By projecting the 

representation (**) of A on, say, the zero coordinate, we see that  n satisfies the 

barycenter equation and we conclude that n E Q(X, #) and that ¢(n) = A. Thus 

¢: Q --+ ,7 maps Q(X, p) onto J~ym(X). 

It is now clear that the map a: (X z, ~(~), T) --+ (M(X),  n, T) which corre- 

sponds to the ® ergodic decomposition 

~(~) = f ~wdtc(w) 
Jw 
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is indeed a T homomorphism. In particular, n a.e. the product measures, ~w are 

mutually singular and ~w ( c~-1 (w)) = 1. 

(2) This follows from the fact that ¢: Q --+ ,7 is an affine homeomorphism. 
| 

COROLLARY 1.3: Let P be a property of ergodic systems which is preserved by 
infinite ergodic selfjoinings as well as factors. Then every quasifactor of a system 
with property P also has property P. In particular, distality and zeroentropy 
are two examples of such properties. 

For more details see [GW]. The works [LPT] and [GTW] deal with the same 

subject from a different viewpoint. 

2. Joining quasifactors 

Let X = (X ,  X, #, T)and Y = (Y, 3;, u, S)be ergodic measure preserving dynami- 

cal systems. Let A E Je (#, u) be an ergodic joining and let 

A =/y(Ay × by) du(y) 

be its disintegration over u. Let ¢: Y --+ M -- M(X) be the measurable map 

associated with this disintegration, ¢: y ~ A v from Y to the space of probability 

measures on X and let s :-- u* = ¢.(u)  be the image of u under ¢. The 

T × S invariance of A and the uniqueness of disintegration imply that  u-a.e. 

TAy = ASy. Thus ¢ is a homomorphism of the system (Y, y ,  u, S)onto the system 

M = (M(X), n, T), where we use T also for the map induced by T on M(X). 
We have the barycenter equation for ~: 

fM O dn(O)= /y Ay du(y)= p. 
(x) 

Thus the system M = ( M ( X ) , n , T )  is a factor of (Y,Y,u ,S)  and a quasi- 

factor of ( X , p , T ) .  With the factor map ¢: Y -~ M = M ( X ) ,  we associate 

the disintegration of u over u* = n: 

u= fMUOdD= L u;~ du*(Ay)= L uy* du*(Y*), 

where for y E Y we let y* = A v = ¢(y). 

Two natural  joinings now arise: 

JM JY 
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on X r := X x M, and 

A' = /v (Ay  x b~ x by) dr(y), 

o n X  ~ x Y .  

Clearly the map ~: (x, Av,y ) ~ (x,y)  from X t x Y to X x Y is 1-1 and 

equivariant, and applying ~; to the definition of A ~ we get 

~(~') = ~(fy(~y × b~ × by) d~(y)) 

-- fy(Ay x by) d~(y) = A, 

so that  ¢ is a canonical isomorphism of (X' x Y, A ~) onto (X x Y, A). 

But we also see that  

A' : -  Iy(Ay X by* X by) dr(y) 

= fM fr(~y x b~* x by) duy*(Y) d~(Y*) 

= fM(Ay. × ~y. × Vy.) dR(y*) 

I% I X l / ,  

so that  finally 

(X '  x Y, A') -- (X '  x Y, ~' x ~,) ~ (X  x Y, A). 
M 

As a corollary of this discussion we see that  every ergodic joining A of two er- 

godic systems (X, p) and (Y, v) is in fact isomorphic to the relatively independent 

joining A ~ = ~' × v of a canonical extension (X', ~') of (X, ~), with (Y, ~), over 
t~ 

the common factor (M, ~). Of course, this relative product becomes "trivial" 

when the map y ~-~ Ay is an isomorphism of Y = (II, 9) onto the quasifactor 

M = (M, v*) = (M, n), in which case also (X × Y, A) is isomorphic to (X' ,  n') 

(as we shall see below, Proposition 2.2, this is exactly the case when we call M 

a joining quasifactor). We have shown: 

PROPOSITION 2.1: Let X = (X, X, #, T)and Y = (]1, y ,  t,, S) be ergodic measure 
preserving dynamical systems, and A an ergodic joining. Form the dynamical 
systems M and X ~ as above. Then M is a quasifactor of X, a factor of Y,  and 
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in ~he commutative diagram: 

( x  x Y,.~) 

( x ' ,  ,~') (y,  ~,) 

(X, #) (M, t~) (Y, u), 

we have A = ,~' x u. 

Definition: Let (X, X, p, T)be an ergodic system and R an ergodic quasifactor 
of (X, #). We say that R is a jo in ing  quas i fac tor ,  jqf for short, if the joining 

R' = f M ( o  x 80) dR(O) 

of the systems (X, p) and (M, R) is ergodie. We denote the collection of joining 

quasifaetors of (X, #) by Qj(X ,  p). 

PROPOSITION 2.2: Let X = (X, X, p, T)be an ergodic system. 
(1) The ergodie quasifactor R of the system X is a jqf  iff there exists an ergodic 

system Y =(Y, y ,  u, S)and an ergodic joining A of (X, #) and (Y, u) such 
that R = u* ; i.e., if 

[ *  

is the disintegration of A over u, ¢: Y --+ M = M(X) ,  ¢: y ~ Ay the 

associated map and u* = Oh(u), then ~ = u*. 
(2) The ergodic system Y =(Y, y ,  u, S)appears as a jqf  of X /tic there is an 

ergodic joining A c J~ (p, u) such that in the disintegration 

= fy(ay × 8~) dr(y), 

the map y ~-+ Ay is 1-1. 

Proof: (1) If R is a jqf, we take (Y, u) = (M(X) ,  R) and 

:~ = ,~' = fM(o × 8o) dR(O), 

which by assumption is ergodie. Conversely, if an ergodie system (Y, y ,  u, S)and 
an ergodic joining A of (X, p) and (Y, u) are given, Proposition 3.1 shows that 
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:= ¢(v) = v* is an ergodic quasifactor of (X, #) and that ~ is ergodic. Part  

(2) is clear. | 

Det~nition: Let (X, #) be an ergodic system and (W, n) a jqf. We say that  n is: 

(1) e rgod ica l ly  e m b e d d e d  if the extension (X x W, ~') --+ (W, n) is an ergodic 

extension, 

(2) weak ly  mix ing  e m b e d d e d  if this extension is a weakly mixing extension, 

(3) m i x i n g l y  e m b e d d e d  if this extension is a mixing extension, 

(4) c o n t i n u o u s l y  e m b e d d e d  if n a.e. ~ is a continuous measure (has no 

atoms) and f in i te ly  e m b e d d e d  if there exists a positive integer r such 

that  n a.e. 0~ is an equidistributed measure on a set of r points. In the 

latter case we say that ~ is of t y p e  r. 

Remarks:  (1) As one can easily see, for a dynamical system (X, #) with factor 

~r: (X, #) -+ (Y, , ) ,  the system (X, #) is ergodic iff both the system (Y, v) and 

the extension rc are ergodic. It thus follows that a qf is ergodically embedded iff 

it is a joining quasifactor. 

(2) Let f ( x , w )  = ~w(x), then ~' a.e. 

f ( T x ,  T w )  = OTw(Tx) = T(O~) (Tx)  = O w ( T - 1 T x )  = f ( x ,  w).  

Thus the ergodicity of nr implies that  either f -- 0, i.e., n is continuously embed- 

ded, or f - 1 /r ,  i.e., n is finitely embedded of type r. 

(3) Mixingly embedded quasifactors are used in Nevo and Zimmer [NZ] and in 

Furstenberg and Glasner [FG]. 

3. Qua s i f a c to r s  o f  pos i t ive  e n t r o p y  s y s t e m s  

In [GW] we have shown that every quasifactor of a zero entropy system is itself 

of zero entropy. Since zero-entropy systems are disjoint from every completely 

positive entropy system, no nontrivial zero-entropy system can appear as a quasi- 

factor of a Bernoulli system or, more generally, of a completely positive entropy 

system. In the rest of the paper we investigate quasifactors of positive entropy 

systems. We begin with two lemmas concerning lifting of quasifactors. 

The first lemma says that  a quasifactor of a factor is also a quasifactor of 

the original system. On the other hand, not every factor of a quasifactor is a 

quasifactor of the original system. Indeed, as we will see later (Theorem 3.6), 

every ergodic system of positive entropy, say (Y, ~), admits every ergodic system 

of positive entropy, say (X, p), as a quasifactor. If we take in this statement (Y, v) 

to be a Bernoulli system and (X, #) = (Y x Z, u x 71) with (Z, ~) any zero-entropy 
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system, we see that  the factor (Z, y) of the quasifactor (X, #) of the system (Y, u) 

cannot appear as a quasifaetor of (Y, u). 

LEMMA 3.1 : If(X, It) -+ (Y, ~) is a homomorphism of ergodic dynamical systems, 
then every quasifactor of (Y, u) is also a quasifactor of ( X, #). 

Proo~ Let / *  

du(y) 

be the disintegration of # over u. Now the map L: M(Y) --+ M(X)  defined by 

f 
n' = ]w Ow x 5w dn(w) 

we have 

L(O) = / y  #y dO(y) 

is an affine isomorphism which satisfies L(TO) = TL(O), VO • M(Y)  and L(u) = 
#. It  follows easily that  via L every quasifactor of (Y, u) lifts to an isomorphic 

quasifactor of (X,p). These are the quasifactors p = n,(n), n • Qe(Y,u) of 

(X, #) that  are supported on L(M(Y)).  | 

LEMMA 3.2: Let 7r: (X, p) -+ (Y, u) be a homomorphism of ergodic dynamical 
systems and n • Q¢(Y, u) an ergodic quasifactor. Let L: M(Y)  --+ M(X)  be as in 
the previous/emma and p • Qe(X,p) be given by p = L,(~). For convenience, 
let us write (M(Y), n) := (W, n) with O~ as a typical element of M(Y).  Denoting 
as usual by ~' and p' the joinings 

and p' = [ L(O~) × 5~ dry(w), 
dw 

p/ : # X /~1. 
l /  

Proof." Dis integrat ing # x g~ over ~ we clearly have 
/2 

I~ x n' = / r  t~y x ~ dn' (y, w). 
u x W  

Using the definition of n' we get 

# x, ~' = / Y x w  #y x 5w dn'(y, w) 

= / w  / y # y  x Sw d(Ow X Sw)(y,w) dt~(w) 

= / w  L(O~) x 5~ an(w) = p'. | 
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COROLLARY 3.3: With notations as in the previous lemma, if  n is a joining 

quasifactor of (Y, u) and either (X, #) -+ (V, u) or (Y  × W, ~') --~ (Y, u) is a 

weakly mixing extension, then the quasifactor p, the lift of n to M ( X ) ,  is also a 

joining quasifactor. 

PROPOSITION 3.4: Every weakly mixing system (X, #) of positive entropy h is 

a weakly mixing extension of a Bernoulli system (Y, u) with entropy h', for every 

0 < h ' < h .  

Proof: Use Sinai's theorem to find a Bernoulli factor Y' of entropy h'. If the 

extension X -~ Y' is not weakly mixing, use the relative Furstenberg-Zimmer 

theorem to find a maximal distal extension Y -+ Y' so that  the extension X --+ Y 

is weakly mixing (see [F]). Now every distal extension is a tower of isometric 

extensions and inverse limits. By Rudolph's theorem, [R], a weakly mixing system 

which is an isometric extension of a Bernoulli system is Bernoulli, and the inverse 

limit of Bernoulli systems is also Bernoulli. Thus Y is a Bernoulli factor of X. 
| 

Given a dynamical system Y = (Y, 3;, u, T) and a positive integer q > 2, we let 

Sq be the finite group of all permutations of coordinates on Yq = Y x Y x . . .  x Y .  

Let a: Yq ~ Y(q) = Yq/Sq  be the quotient map. We denote by (Yl, Y2,.. . ,  yq} a 

typical point of ]z(q). 

LEMMA 3.5: Let Y = (Y, 3?, u, T) be an ergodic system and let (Y  x Y x . . . x Y, A) 

be a q-fold sel~oining of (Y, u), q a positive integer or oo. 

(1) Let {al,  c~2,..., aq} be a set of q distinct positive real numbers with sum 
1 and define a map 

¢: Y x Y x -..  x Y -+ M(Y),  
q 

¢: (y,, y2 , . . . ,  yq) 
j--1 

Clearly ¢ is a Bore/equivariant isomorphism and we set n = ¢.  (A). Then 

( M ( Y ) ,  n) is a quasifactor of (Y, u) which is isomorphic to (Yq, A). Thus 

every self-joining of (Y, u) is isomorphic to a quasifactor of (Y, u). 

(2) For q < c~, let a: Yq ~ Y(q) = Yq/Sq  be the quotient map, and set 

--: a,(A). Define a map 

~: Y(q) -~ M(Y),  

1 ~ ~yj. 
¢: (Yi, Y2 . . . .  , yq}  e-~ ~[(yl,y2 ..... Yq} : =  q j = l  
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Clearly ¢ is a Borel isomorphism and we set ~ = ¢ , (~ ) .  Then (M(Y) ,  ~) 

is a quasifactor of (]I, u) which is isomorphic to (Y(q), ~). It is a joining 

quasifactor iff the measure A is symmetric (i.e., A is invariant under the 

symmetric group Sq of permutations of coordinates in Yq). Thus every 

symmetric q-fold self-joining of (Y, u) has a q! to 1 factor (an Sq-quotient) 

which is isomorphic to a joining quasifactor of (Y, u). 

Proof'. (1) The  barycenter  of g is 

= / ¢(Yl, Y2, • • •, Yq) d/~(Yl, Y2 , . . ' ,  Yq) b(n) 

= ~ aj ! hy~ du(yj) = ~j u = u. 
j : l  j : l  

Thus (M(Y) ,  n) is a quasifactor of (Y, u) which is isomorphic to A. 

(2) If A is symmetric ,  then the disintegration of A over ~ is given by 

A= fy 1 

To check the jq f  p roper ty  we form the measures 

n' = / 7(yl,y ~ ..... u~) × 5(y,,y2 ..... uq) d~ and ~ = / hyi X h(yl,y 2 ..... yq) dA. 

Now the map 

id ×~r: Y × Yq --4 Y × Y(q), 

(y, (y, 

is an equivariant map and one can easily check tha t  (id ×a),(f~) -- n ~. It  follows 

tha t  also n ~ is ergodic, so tha t  g is indeed a joining quasifactor. 

On the other  hand, if A is not symmetric ,  then there exists ~r E Sq with 7r, (A) 

singular to A and it is easy to see that  in this case 

= / 7 ( y ~ , y ~  ..... y~) × 5(y~,~ ..... y~) d~ 

is not ergodic. II 

THEOREM 3.6:  Each ergodic system of positive entropy, say Y = (]I, J;, u), ad- 

mits every ergodic system of positive entropy, say X -- (X, X, #), as a quasifactor. 

Proo~ Since every ergodic system of positive entropy admits a Bernoulli factor of 

arbi trar i ly small entropy [S], it is enough, by Lemma 3.1, to prove the assertion for 
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an arbitrary ergodic system X = (X, X, it) and a Bernoulli system Y = (Y, y ,  u) 

with entropy h(Y) < h(X). 

By [ST] one can find three Bernoulli factors of (X, X, it),/31, B2,/33, such that 
3 

,~' : Vj=I Bj. Let hj = h(13j),j = 1,2,3, and let h = min{hl,  h2, h3}. Now if 

necessary, we split each factor By into a direct product of Bernoulli factors in 

such a way that we end up with, say, q Bernoulli factors Cj, j  = 1 , . . . , q ,  with 

h(Cj) < h and X ~--" V q = l  Cj. (When h(it) = ~ we will have q -- oc.) Next we 

use the relativized version of Sinai's theorem of [O] to embed each Cj in a larger 

Bernoulli factor .Aj with h(J4j) = h , j  = 1,. .  ., q. We now have X = Vj----lq ,Aj 

and, denoting by Y = (Y, y ,  u) the Bernoulli system of entropy h, we see that  

X is isomorphic to a q-fold self-joining of Y; (X, it) TM (Y x Y x . . .  x Y, A). Now 

Lemmas 3.5 and 3.1 complete the proof of the theorem. | 

PROBLEMS: 

(1) Is this theorem true for joining quasifactors? I.e., does every ergodic system 

of positive entropy admit every ergodic system of positive entropy as a 

joining quasifactor? 

(2) Find an example of two ergodic systems X and Y such that Y appears as 

a quasifactor but not as a jq f  of X .  

A minor contribution toward a solution of these questions is the following 

observation. 

PROPOSITION 3.7: Let X -- (X ,#)  be an ergodic system, XZ~Y = (Y,u) a 

factor, with Y weakly mixing. Let 

it = f v  it~ dr(y) 

be the disintegration of it over v. Given n >_ 1 let ¢: y(n) _+ M ( X )  be detlned 

by 
~ n 

(Y l 'Y2 ' ' ' ' 'Yn~  ¢ ~ l E i t Y j  ::~f(Yl,Y2 ..... Yn)" 
j=l 

Set n -- ¢,(u(n)). Then (M(X) ,  n) is a joining quasifactor of X and the map ¢ 

is an isomorphism of ( y(n), l](n) ) onto ( M ( X ), ~). 

Proof." Since the family of measures {py} is a.s. pairwise singular, it follows 

that the equality #yl + itYl q- " '"  q- Py~ = ity~ q- Py~ q- " ' "  q- Py~ implies py~ ---- 

#y~, j = 1 , . . . ,  n, after a suitable rearrangement of the set {y~, . . . ,  y{~}. Thus 
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the map (Yl, Y2,.. . ,  Yn] n 2_,j=l ituj is a.s. 1-1. It is easy to see that g is an 
ergodic quasifactor of X. 

Now to check the jqf property we form the measures 

g t = / 7 ( y l , y 2  ..... yn) XS(yl,y2 ..... y~)du (n) and k = / i t . ( x l )  xS(xl,x2 ..... ~ ) d i t  ~. 

Since by assumption Y is weakly mixing, the measure ~ on X × Y(~) is ergodic. 

Now if we write a for the quotient map from Y~ -+ Y(~), then the map 

id ×(a  o 7rn): X × X n -+X × Y(~), 

(X, (Xi, X 2 , - . . ,  Xn)) I--~(X, (71"(/1) , T ' (X2) , . . .  , 7f(Xn))) 

is an equivariant map and one can easily check that (id ×(a  o ~rn)).(k) = ~'. It 

follows that  also ~' is ergodic, so that ~ is indeed a joining quasifactor. | 

COROLLARY 3.8: Let X be a weakly mixing system of positive entropy. Then 

X admits every Bernoulli system as a joining quasifactor. 

P r o o f  By Sinai's theorem [S] we can find for every positive k < h(it) a Bernoulli 

factor (X, #)-~(Y, , )  with h(v) = k. Now for every n > 1, y(n) is a Bernoulli 

system with entropy nk and our corollary follows from Proposition 3.7. | 

4. W e a k  Pinsker systems as jo ining quas i f ac to r s  

Recall that  a system (X, #) satisfies the weak  P i n s k e r  p r o p e r t y  (WP for short), 

if for every (f > 0 there exist a Bernoulli factor (X, #) -+ B and an independent 

factor (X, #) -+ Y with hu(Y) = (f such that  (X, it) = B × Y; see IT] and [Fi]. 

One of the central open problems in measurable ergodic theory is: do there exist 

positive entropy systems that are not WP? In view of this, the next theorem 

represents a significant step in answering the problem that we posed in section 

3. 

THEOREM 4.1: I f  (Y, u) is a weakly mixing system with positive entropy and 

(X, it) an ergodic system with the WP property and with finite positive entropy, 

then some finite to one group factor of(X,  it) is isomorphic to a joining quasifactor 

of (y, 

In proving Theorem 4.1 the following theorem will be used (in place of the 

Smorodinsky-Thouvenot result ([ST]) that was used in proving Theorem 3.6). 
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THEOREM 4.2: / f  (X, #) is an ergodic system with the W P  property and with 

positive entropy ho, then for every h > 0 there is a Bernoulli system A with 

entropy < h and a symmetric k-fold seltjoining A of A for some k, with (Ak, A) 

isomorphic to (X, #). 

In turn, the main tool for the proof of Theorem 4.2 is the next proposition. 

Let {~n: n • Z} be an i.i.d. {0, 1}-valued process with 

P ( { ~ = O ) =  l - e ,  P ( { n =  l ) = e .  

We say that  a {+l}-valued process {?In : rt • Z} is r e s i s t a n t  t o  a ( 1 - c ) - e r a s u r e  

channe l ,  if the independent joining { ( ~ ,  ~1~) : n • Z} can be recovered from the 

process {~n = ~,~ ~n : n • Z}. In other words, there exists a measurable function 

F({~n}) = {(~n, ?]n)}- 

PROPOSITION 4.3: For every 0 < e < 1 and every ergodic system Y = (Y, y ,  ~,) 

with h(Y) < e, there exists a measurable partition {Q1, Q - l }  of Y which is a 

generator for Y and for which the {+1}-valued process {~ln : n E Z} defined on 

Y b y  

?In (Y) = 1 - 2 .1Q_ 1 

is resistant to a (1 - e)-erasure channel. 

Proof: As is well known, the (1 - e)-erasure channel has positive capacity equal 

to c (see, for example, [CK] page 114). Being a discrete memoryless channel it 

satisfies the hypotheses of Theorem 1 in [K] and then our result follows immedi- 

ately from his corollary. 

Proof of Theorem 4.2: Let (X, #) be a WP system with entropy ho > 0. We 

choose an c > 0 such that  

hi = H ( 1  - e,e/2,  e/2) < h ,  

and such that  for some positive integer k and 0 < ~ < min(ho, c), 

h o - 6 = - ( 1 - c ) l o g ( 1 - e ) - 2 2 k {  e---~log ~ 
~22k] 2~k 

= - (1 - e) log(1 - e) - e log e + e2k. 

Next define a Bernoulli process 
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with values in the 2 2k 4- 1 element set 

2k+1 

{ ( e l , . . . , e # k + , ) : ~ = + l ,  H e i = l } U { ( 0 , . . . , 0 ) } ,  
i=1 

and entropy h0 - 5: 

~n = (((t), ~:(2k+1)~ = { (0, 0 , . . . ,  0), with probabil i ty 1 - e, 
"" "'~n ~ (4-1 . . . .  ,4-1), with probabil i ty ~/2 2k. 

Using the weak Pinsker proper ty  we write X = B x Y with B represented by 

the Bernoulli process { ~ }  and Y an independent  factor with entropy 6. Then  

by an appropriate  choice of a par t i t ion (Proposi t ion 4.3) {Q1, Q - t } ,  the process 

{~/n : n C Z} defined on Y by 

~?n(Y) = 1 - 2 . 1 Q _ ~  

will have the properties: 

(1) The  process 
{(~(1),. ~(2k+1).. u 

• . ~ ".,.p., "j , f ' ~ j j  

generates (X, #), and 

(2) the p r o c e s s  {/~n : n C Z }  is resistant to a (1 - e)-erasure channel. 

Set 
O~n i) f:(i),n On : (0(nl), . 0(2k-t-1)'~ %n "In, 

It is then easy to check tha t  the process {0~} is identically distributed. Moreover, 

it can be checked tha t  the process {0~ i) } is symmetr ic  in i, hence can be viewed as 

a symmetr ic  joining of 2k+  1 Bernoulli processes {0~ = 0 (i) }, each of entropy hi = 

H(1  - e, e/2, e/2). 

Now set 
2k+1 

"~n  , 

i=1 

f 0, with probabil i ty 1 - c, & 
1, with probabil i ty c, 

and observe tha t  

is an erasure channel with probabil i ty 1 - e. Finally, since ,2k+1 -,n = r/n we get 

2k+1 

?~n~n = H O(i)" 
i=l 
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The nature of the partition {Q1, Q - l }  implies that  the full process 

{ (~(1) ~-(2k-]- 1). ~. "~/ 
, " • " ,  " ~ n  , ~ l n )  I 

(which generates (X,#))  is also generated by the process {0,~}. The latter is 

a (2k + 1)-fold symmetric selfjoining of a Bernoulli system of entropy hi = 

g ( 1  - e, e /2 ,  e /2 )  < h. | 

Proof  of Theorem 4.1: Recall that  we are given two ergodic systems with pos- 

itive entropy (X, #) and (Y, u), where (X, #) is weakly mixing and has the WP 

property, and we want to find a finite to one group factor of (X, #) as a joining 

quasifactor of (Y, u). By Corollary 3.3 and Proposition 3.4 we can assume that  

(Y, u) is Bernoulli with arbitrarily small entropy. An application of Theorem 4.2 

and the use of Lemma 3.5(2) complete the proof. II 
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